
Problem 1 Design of a PID controller 
a).  From Eq. (15.5), the transfer function after normalizing the frequency to the undamped resonant frequency is, 
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where we have, 
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b).  We will use a single pole controller, which has the form 
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The loop transfer function is hence, 
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Using Matlab command rlocus(sys), the root locus plot of the closed loop transfer function is shown in 
Figure 1 below.  A zoomed-in view of the root near the imaginary axis as shown Figure 2 reveals that the maximum 
gain Ko  at which the two poles will coincide with the imaginary axis and hence the system will become unstable is 
98.9.  The Matlab code used to generate these two plots is provided. 

Figure 1. Root locus plot of the closed loop transfer function. Figure 2. Zoomed-in view near the imaginary axis. 
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De sign a PID controller 



% root locus plot 

clear all;
close all; 

Hden=[1 0.1 1];
Hnum=[1/10/pi^2];
H=tf(Hnum,Hden) 

Kden=[0.1 1];
Knum=[1];
K=tf(Knum,Kden); 

sys=H*K; 

rlocus(sys); 

c).  Instead of using a single-pole controller, we will design a PID controller that achieves overall critically damped 
system.  A normalized PID controller has the form, 
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The closed loop transfer function now becomes, 
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This is a third order system with 3 poles and 2 zeros. We know that for a second order system, critically damped 
response means that the system transfer function has two real poles that are equal, and as a result, the system 
achieves steady state with the fastest response without overshoot.  In order for the system to exhibit a second order 
behavior, we ideally would want to have 2 equal real poles and a third pole that would cancel out a zero. It turns out 
that for this problem, it is not possible to achieve the critical damping with a PI controller.   What we can do, 
however, is to have a third pole that is much larger than the 2 real poles such that its fast response does not have 
much noticeable effect on the second order system behavior.  Therefore, we can express the denominator as, 

ŝ + a ŝ + b , where  a  � b(  ) ( )2 

And by comparison, we have, 
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There could be many choices for a and b that could satisfy the criteria of critical damping, and without 
further specification on the rise time, for example, we will choose one pair that works.  From part a), we can derive 
that the plant H(s) has two complex poles 0.05 ± j . In order to have faster response, we want to have two real poles 
move to the left of the S-plane.  Let’s choose b=1, and a=1000, say.  We can derive that, 
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⎪
⎩γ = 0.501 

Hence the PID controller that is chosen is, 
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The root locus plot of the new loop transfer function  
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( ŝ 
⎝
+ 0.1

ŝ 
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is shown in Figure 3.  The two zeros are very close to the real poles. Although it is advantageous to have the zeros 
far away from the dominant poles, since the zeros of a system affect pretty much the amplitude, rather than the 
oscillation nature of the system (as long as they are in the negative half of the s-plane), we do not have to worry 
about them too much.  The step response of the overall closed loop system is shown in Figure 4, demonstrating the 
critical damped response, with a rise time on the order of 3 ms. 

Figure 3. Root locus plot of the system with PID controller. Figure 4. Step response of the system wit PID controller. 

The MATLAB coding used for this portion of the problem is provided below: 

% root locus plot 

clear all;
close all; 

Hden=[1 0.1 1];
Hnum=[1/10/pi^2];
H=tf(Hnum,Hden) 

Kden=[1 0];
ko=20000*pi^2;
Knum=ko*[0.501 1 0.5];
K=tf(Knum,Kden); 
sys=H*K rlocus(sys); figure

step(sys/(1+sys),0.01) 




, A). reug) (fis(Kller ocontrp ma- oprebuffa ith  wF p00=2Cad of e loacitiv a capge, assume we are drivinlpamex
In this re.  aproper chout  instabilities witrcuitn create cicancies, quefrehigh en at vdrin s, whed loahcuS.  actuators

s parallel-plate ah s sucrducesntraincluding electrostatic s dloag capacitive nivisk of drate htn faced with e ofteraWe 
ads o lecitivpad canaility bStalem bPro

10 ⋅π25 10⋅π2+1( 8+1() )s s=) s(K 
5 .310

rm o feh tofn oiunct ffersnrar trde-ond is a 2K(s) that esumw asNob.
. )0V−V )(s(K )s(H =0 V as definedn is tioc funnsmissio trane loopere thwhit, for the circu) s(K)s(H
tion cfunn issiosm tranope lo thalyticallyane interme, dCr  capacitoade lo th (B), withnl iedoit mcircu

hg tn, usiΩ=40 0Rce t resistanputuite os a finaifiers) hlpe ALL amiklifier (lpe amhat tthe mAssua.
) (B) (A



Problem  Stability and capacitive loads 

a). Determine the loop transmission function H(s)K(s) 
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From the circuit model on the left, we have 
V− =V0


V +=V


Applying KCL at the node connecting the output resistor and the capacitor: 
V0 − K s (V −V0 ) V0+ = 0 

R0 1 
sC 

Rearrange terms, we get, 

Vo = 
K (s) 

⋅ (V −V0 )
1 + R ⋅ s ⋅Co 

The model is equivalent to a linear feedback system with an overall transfer function as, 
V0 = H (s)K (s)(V −V0 ) 

which is referred to as Black’s formula. 
The Loop transmission function is hence, 

H (s)K (s) = 
K (s) 

1+ R ⋅ s ⋅Co 

b). Assuming  
103.5 
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s s) (1+ 8(1+ 2π ×10  5 2π ×10  ) 

The transmission function then becomes 
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For the case C = 0, the loop transmission function becomes 

3162.28π 2 

H (s)K (s) = 2 −5 2 −13 )π + s ⋅ (0.5005π ×10 )  (  + s 0.25 ×10 

For the case C = 200x10-9 F, the loop transmission function becomes 
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3162.28 ⋅π 2


H (s)K (s) =
π 2 + s(1.58 ×10−5 )+ s 2 (1.5079 ×10−13 )+ s 3 (2 ×10−22 )


The phase margin and bode plots of the two cases are shown below. 

The phase margin angle γ is defined as 

γ = 180o + α


where α is the phase angle where the amplitude of the output signal is equal to the amplitude of the input signal.  A 
system is stable implies a positive phase margin value.  

For the capacitance value of 0 F, the phase margin is 31.3510. 
For the case with C = 200 pF = 200x10-12 F the phase margin is -19.2640. The system is unstable. We can 

see that a larger capacitance implies a smaller phase margin. 



The phase margin is zero when the capacitance is decreased to about 18.44 pF, which is the maximum 
capacitance to be driven stably and the corresponding frequency is 147 MHz.  
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