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Complexzity Simplified

Problem Design aPID controller

We are trying to control an electrostatic electrode actuator with a lumped mass of 1 g, a resonant frequency of 50
kHz, and aQ of 10. We will model the linearized system as a spring-mass-damper 2™-order system. The plant
transfer function H(s) will be X(s)/F(s).

a  First, recast thetransfer function in terms of the non-dimensional complex frequency § = s/ w,.

b. Now, assume that you are using a single-pole controller of the form in equation (15.14), with non-
dimensionalized time constant 7 =0.1. Using aroot-locus plot for the overall control system transfer
function X,(9/X;n(s), determine the maximum controller gain (Ko) a which the systemis stable.

c. Instead of using a single-pole controller, design a PID controller that achieves overal critically
damped system response with no DC error. Demonstrate results with SIMULINK or MATLAB

simulations.
Problem 1 Design of a PID controller
a). From Eq. (15.5), the transfer function after normalizing the frequency to the undamped resonant frequency is,
X g
F(s) §+-8+1
Q

where we have,

§=i,wherea)O =27-50kHz=7zx10°rad /s

@,

k=w;m=7"x10"(rad/s)x10~ (kg) =107

Q=10
And hence,
1

107° (8 +0.15+1)
b). We will use a single pole controller, which has the form

K($) =

H(8) =

KO
1+0.18

The loop transfer function is hence,
K,/107°
(0.18+1)(8 +0.18+1)
Using Matlab command rlocus(sys), the root locus plot of the closed loop transfer function is shown in

Figure 1 below. A zoomed-in view of the root near the imaginary axis as shown Figure 2 reveals that the maximum
gain K, at which the two poles will coincide with the imaginary axis and hence the system will become unstable is

H($K($) =

98.9. The Matlab code used to generate these two plots is provided.
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Figure 1. Root locus plot of the closed loop transfer function. Figure 2. Zoomed-in view near the imaginary axis.



% root | ocus plot

clear all;
close all;

Hden=[1 0.1 1];
Hnun¥[ 1/ 10/ pi ~2] ;
H=t f (Hhum Hden)

Kden=[ 0.1 1];
Knume[ 1] ;
K=t f (Knum Kden) ;

sys=HK;
rl ocus(sys);

c). Instead of using a single-pole controller, we will design a PID controller that achieves overall critically damped
system. A normalized PID controller has the form,

K($) = K0(1+§+y§J

The closed loop transfer function now becomes,
Ko/ 2 &
X, ?(;/sz+s+ﬂ)

Xin g +[1+K°7]§2 +(1+K°j§+K°’B
Q Kk k k

This is a third order system with 3 poles and 2 zeros. We know that for a second order system, critically damped
response means that the system transfer function has two real poles that are equal, and as a result, the system
achieves steady state with the fastest response without overshoot. In order for the system to exhibit a second order
behavior, we ideally would want to have 2 equal real poles and a third pole that would cancel out a zero. It turns out
that for this problem, it is not possible to achieve the critical damping with a PI controller. =~ What we can do,
however, is to have a third pole that is much larger than the 2 real poles such that its fast response does not have
much noticeable effect on the second order system behavior. Therefore, we can express the denominator as,

(8+a)(5+ b)2 ,wherea>b

And by comparison, we have,
1 Ky

Q
1+%:b2+2ab

=a+2b

K
o =ab2
kﬂ

There could be many choices for a and b that could satisfy the criteria of critical damping, and without
further specification on the rise time, for example, we will choose one pair that works. From part a), we can derive
that the plant H(S) has two complex poles 0.05% j . In order to have faster response, we want to have two real poles

move to the left of the S-plane. Let’s choose b=1, and a=1000, say. We can derive that,
K, =2000k =2x10* 7
£=05
7 =0.501

Hence the PID controller that is chosen is,



K(8)=2x10*7" (1+£+o.501éj
S

The root locus plot of the new loop transfer function

2><103(1+0'é5+0.501§j

H(SK (S =
OKE (8 +0.15+1)

is shown in Figure 3. The two zeros are very close to the real poles. Although it is advantageous to have the zeros

far away from the dominant poles, since the zeros of a system affect pretty much the amplitude, rather than the

oscillation nature of the system (as long as they are in the negative half of the s-plane), we do not have to worry

about them too much. The step response of the overall closed loop system is shown in Figure 4, demonstrating the

critical damped response, with a rise time on the order of 3 ms.
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Figure 3. Root locus plot of the system with PID controller. Figure 4. Step response of the system wit PID controller.
The MATLAB coding used for this portion of the problem is provided below:

% root | ocus plot

clear all;
close all;

Hden=[1 0.1 1];
Hnun¥[ 1/ 10/ pi ~2] ;
H=t f (Hhum Hden)

Kden=[1 0];
ko=20000% pi *2;
Knumeko*[ 0. 501 1 0.5];
K=t f (Knum Kden) ;
rf%?:ﬁ'é'? Iéys) ;
figure
step(sys/ (1+sys), 0.01)
Problem  Stability and capacitiveloads
We are often faced with the task of driving capacitive loads including electrostatic transducers such as parallel-plate
actuators. Such loads, when driven at high frequencies, can create circuit instabilities without proper care. In this
example, assume we are driving a capacitive load of C=200 pF with abuffer op-amp controller K(s) (figure, A).
(B)
a Assume that the amplifier (like ALL amplifiers) has a finite output resistance Ry=40 Q, using th
circuit model in (B), with the load capacitor C, determine anaytically the loop transmission function
H(s)K(s) for the circuit, where the loop transmission function is defined as V,, = H (S)K(S)(V —V,) -
b. Now assume that K(s) is a2™-order transfer function of the form

l 5
O s s )
T 201008 T2710°



which approximates the National Semiconductor LM 359 high-speed op-amp. Determine the overal loop
transmission function H(s)K(s). Make a Bode plot for the loop transmission function and determine the
phase margin with and without the capacitor. What is the maximum capacitive load that this amplifier can
drive and be stable?

Problem Stability and capacitive loads

a). Determine the loop transmission function H(s)K(s) \/
‘4
+ —H V0 V+ ©
: S Omv) L
& L y —=C
Ll =C - .
- =i o
iR -
(A (B)
From the circuit model on the left, we have
V.=V,
V.=V

Applying KCL at the node connecting the output resistor and the capacitor:
Vi -KV V) Y
R, S
sC
Rearrange terms, we get,
o KOy,
I1+R,-s-C
The model is equivalent to a linear feedback system with an overall transfer function as,
Vy = HK(S)(V -V,)
which is referred to as Black’s formula.
The Loop transmission function is hence,

K
HOK(E = 1+ RO(S)SC
b). Assuming
103,5

S S
(1+Aﬂ><105)(1+47l'><108)

K(s)=

The transmission function then becomes

103,5 1
K= S S '1+R)'S~C
(1+A7r><105)(1+47r><108)
3162.287>

22 +90.50052x10° + R, -C-7”)+*(0.25x10™ +0.5005x10~° - R, -C-7)+s'(0.25x10 " R, -C)
For the case C = 0, the loop transmission function becomes

3162.287°
7° +5-(0.50057 107 )+ §7(0.25x 107

H(s)K(s)=

For the case C =200x10” F, the loop transmission function becomes



3162.28 - 7°

O = Ji58x107 )+ 515079 %107 )+ s 2 107)

The phase margin and bode plots of the two cases are shown below.

Bode Diagram for C=0

Gm = Inf, Pm = 31.351 deg (at 1.0327e+009 rad/sec)
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Bode Diagram for C=200 pF

Pm =-19.264 deg (at 4.421e+008 rad/sec)
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The phase margin angle v is defined as
y=180° +a

where a is the phase angle where the amplitude of the output signal is equal to the amplitude of the input signal. A
system is stable implies a positive phase margin value.

For the capacitance value of 0 F, the phase margin is 31.351°.

For the case with C = 200 pF = 200x10™'? F the phase margin is -19.264°. The system is unstable. We can
see that a larger capacitance implies a smaller phase margin.



The phase margin is zero when the capacitance is decreased to about 18.44 pF, which is the maximum
capacitance to be driven stably and the corresponding frequency is 147 MHz.

Bode Diagram for the maximum capacitance of 18.44 pF

Pm = 0.00074899 deg (at 9.2361e+008 rad/sec)
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